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A nonlinear equation based on the hydrodynamic equations is solved analytically
using perturbation expansions to calculate the flow field of a steady isothermal,
compressible and laminar gas flow in either a circular or a planar microchannel.
The solution takes into account slip-flow effects explicitly by utilizing the classical
velocity-slip boundary condition, assuming the gas properties are known. Consistent
expansions provide not only the cross-stream but also the streamwise evolution of the
various flow parameters of interest, such as pressure, density and Mach number. The
slip-flow effect enters the solution explicitly as a zero-order correction comparable
to, though smaller than, the compressible effect. The theoretical calculations are
verified in an experimental study of pressure-driven gas flow in a long microchannel
of sub-micron height. Standard micromachining techniques were utilized to fabricate
the microchannel, with integral pressure microsensors based on the piezoresistivity
principle of operation. The integrated microsystem allows accurate measurements of
mass flow rates and pressure distributions along the microchannel. Nitrogen, helium
and argon were used as the working fluids forced through the microchannel. The
experimental results support the theoretical calculations in finding that acceleration
and non-parabolic velocity profile effects were found to be negligible. A detailed error
analysis is also carried out in an attempt to expose the challenges in conducting
accurate measurements in microsystems.

1. Introduction
Micromachining technology has reached a mature stage as its products, Micro-

Electro-Mechanical Systems (MEMS), find applications in a widening field of dis-
ciplines. MEMS applications range from consumer products to industrial tools,
biomedical microdevices and instrumentation. In order to design such microsystems
effectively, it is crucial to understand the physical laws governing their operation.
Therefore, micromechanics in general and micro fluid mechanics in particular has
become a major research field (Ho & Tai 1996).

Most microsystems will inevitably include fluid flows either in a primary or sec-
ondary role. When dealing with flow in configurations of microns or less, many
unexpected phenomena have been observed (Ho & Tai 1998), such as the friction
factor in microscale (Pfahler et al. 1991). The flows in macro- and microsystems are
not quite the same. There is still a great deal of difficulty in understanding the complex
surface effects, which play a major role in both liquid and gas flows in microfluidic
systems. In microscale liquid flows, electrokinetic (Hunter 1981) and polar mechanic
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effects (Stokes 1984) become important, while rarefaction has to be considered in
gas flows. As the characteristic length scale of the system approaches the mean free
path (m.f.p.), the flow cannot be modelled based on the continuum hypothesis and,
thus, microscopic effects have to be taken into account. The ratio between the m.f.p.
and the characteristic length scale, the Knudsen number (Kn), is used to distinguish
among different flow regimes (Schaaf & Chambre 1961). The flow is considered to
be in the continuum regime if Kn < 10−3, while for 10 < Kn it is considered a free
molecular flow. A rarefied gas flow, such as in a microchannel, can be considered
neither continuous nor free molecular. A further classification is needed, i.e. slip-flow
for 10−3 < Kn < 10−1 and transition flow for 10−1 < Kn < 101, each suggesting a
particular type of analysis. This classification is based on empirical information, and
it is widely accepted that in the slip-flow regime the continuum model is still valid
provided the velocity-slip and temperature-jump boundary conditions are utilized
(Beskok & Karniadakis 1994).

Rarefied gas flow was intensively studied in the early 1960s by solving the (con-
tinuous) Boltzmann equation using semi-analytical or pure numerical methods (Cer-
cignani, Illner & Pulvirenti 1994). However, there are some difficulties in applying
the Boltzmann equation to shear flows, e.g. channel flow, and analytical solutions are
obtained under highly restrictive assumptions (Chu & Zohar 2000). This approach is
more suitable for the transition and free-molecular flow regimes. Numerical modelling
using the direct simulation Monte Carlo method has also been conducted (Piekos
& Breuer 1996). There are a few theoretical studies addressing compressible flow
in straight and uniform micro-channels using continuum flow models. Prud’homme,
Chapman & Bowen (1986) obtained a perturbation solution of the Navier–Stokes
equations for a circular tube with the assumption of no radial pressure gradient.
Van den Berg, ten Seldam & van der Gulik (1993a, b) also used perturbation ex-
pansion methods to solve the isothermal, compressible Navier–Stokes equations for
laminar flow in a capillary without considering slip flow effects. They derived ana-
lytical expressions for the effects of flow acceleration and a non-parabolic velocity
profile. Harley et al. (1995) further simplified the mathematical model to obtain
a closed-form solution for the gas density distribution in a micro-channel, but still
without considering slip flow effects. The Knudsen-number effect was introduced only
in the estimation of the Poiseuille number. Beskok, Karniadakis & Trimmer (1996)
extended the classical Maxwell/Smoluchowski slip conditions by including higher-
order Knudsen-number effects in order to simulate heat and momentum transfer in
gaseous microflows, and the competing effects of compressibility and rarefaction were
highlighted. Arkilic, Schmidt & Breuer (1997) presented a two-dimensional analysis
with a first-order velocity-slip boundary condition, demonstrating the effects of both
compressibility and rarefaction in long microchannels. They showed that the zero-
order analytic solution corresponded well with experimental results of Pong et al.
(1994).

Experimental research on flows in uniform but not-straight (Lee, Wong & Zohar
2001) or in straight but non-uniform microchannels (Lee, Wong & Zohar 2002a, b)
is underway. However, flow through a straight and uniform channel is the simplest
and most fundamental configuration in microfluidic systems. Accordingly, flows in
straight microchannels have been studied experimentally and theoretically. Although
rarefied internal gas flows are encountered both in low-pressure environments and in
micron-size geometries at standard atmospheric conditions, conducting experiments
in such minute systems is still a formidable challenge. Sreekanth (1968) studied the
flow of rarefied gases under large pressure gradients and high Knudsen numbers
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(Kn). The experimental measurements of the friction factor agreed well with the-
oretical predictions assuming a single-coefficient wall slip model and locally fully
developed flow, as long as Kn < 0.13. (Note that Kn ∼ 0.1 is widely recognized as the
boundary between the slip, Kn < 0.1, and the free-molecular flow regime, Kn > 0.1.)
Choi, Barron & Warrington (1991), on the other hand, measured a friction factor
17% lower than the theoretical predictions for nitrogen flow in tubes with diameters
smaller than 10 µm. Wu & Little (1983) reported friction factors larger than predic-
tions by established correlations. They attributed the anomalous results to the high
degree of surface roughness in their channels. Harley et al. (1995) investigated low-
Reynolds-number, high-subsonic-Mach-number, compressible flow in microchannels
with Kn < 0.38. They reported measured values of the friction constant within 8%
of theoretical calculations based on isothermal, locally fully developed flow. Fur-
thermore, they concluded that the pressure in each cross-section could be assumed
uniform and the transverse velocity could be neglected. Arkilic et al. (1997) carried
out an experimental investigation into gaseous flow with slight rarefaction through
long microchannels. They compared measurements of helium mass flow rate in a
1.33 µm channel with their two-dimensional analysis of the Navier–Stokes equations
incorporating a first-order velocity-slip boundary condition. The agreement between
the experimental data and the calculations was well within 5%. Wu et al. (1998)
reported that the microchannel cross-section could be enlarged under high pressure,
which resulted in higher flow rates.

All the experimental results discussed so far were based on flow rate measurements
only. This is not surprising since measuring flow properties in a microconfiguration is a
challenging task (Ho & Tai 1998). The need for microflow diagnostics to provide more
detailed information has been recognized. Liu et al. (1993) integrated pressure sensors
to measure the pressure distributions along microchannels (Pong et al. 1994). Jiang
et al. (1999) suspended micro-thermistors, 0.4 µm in thickness, across microchannels
1.4 µm in height for local temperature measurements. Meinhart, Wereley & Santiago
(1999) used particle image velocimetry to map the velocity field in liquid flows through
microchannels. Shih et al. (1996) conducted detailed measurements of both mass
flow rate and pressure distribution. They found the pressure drop in microchannels
to be very high, leading to significant changes in the gas density. Consequently,
the pressure distribution was not linear as in typical creeping flows, and it is a
useful property for examining analytical results. In this work, similar procedures are
followed to measure flow rates and pressure distributions in a microchannel using
nitrogen, argon and helium as the working fluids. The experimental results are used
to verify the theoretical calculations. Moreover, a detailed uncertainty analysis is
carried out in order to highlight the pitfalls unique to measurements in microfluidic
systems, which could partially explain the somewhat conflicting data previously
reported.

2. Mathematical modelling
An isothermal steady compressible pressure-driven microchannel flow is examined.

The flow through a straight uniform channel is assumed to be two-dimensional,
either planar or circular, and the various equations are expressed in the appropriate
coordinate system; x is the streamwise (axial) coordinate, y the cross-stream (radial),
and z the spanwise (azimuthal). The full hydrodynamical equations are rarely used to
set up the mathematical flow model. Instead, restricted forms of these equations are
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usually adapted to allow analytical solutions. The assumptions made in the present
work are the following:

(i) The fluid is Newtonian.
(ii) The microchannel half-height or radius H is small compared to its length L,

H/L < 10−3, and it is also small compared to the width, H/D < 10−1, for planar flow.
(iii) The cross-stream (radial) and spanwise (azimuthal) velocity components, v

and w, can be neglected, i.e. the gas flow is strictly uni-axial and laminar. The Reynolds
number is on the order of one, Re = 2Hua/ν ∼ 1, with ua the average velocity and ν
the kinematic viscosity.

(iv) The pressure P is a function of the streamwise coordinate x only, P = P (x).
(v) The flow is in the slip regime. The Knudsen number is on the order of 0.1,

i.e. Kn = λ/2H ∼ 10−1; λ is the gas mean free path.
(vi) A slip boundary condition is utilized.
(vii) There are no gravity effects.
(viii) Both the shear, µ, and the bulk viscosity of the fluid, η, are constant in the

pressure range throughout the microchannel.
(ix) The flow is two-dimensional, i.e. all spanwise (azimuthal) gradients are equal

to zero.
Under these simplifying conditions, the equations of motion for gas flow in either

planar or circular microchannel reduce to

∂(ρu)

∂x
= 0, (1a)

ρu
∂u

∂x
= −∂P

∂x
+ µ

1

ym
∂

∂y

(
ym
∂u

∂y

)
+ µ

(
4

3
+
η

µ

)
∂2u

∂x2
, (1b)

µ

(
1

3
+
η

µ

)
∂2u

∂x ∂y
=
∂P

∂y
= 0, (1c)

where ρ and u are the fluid density and streamwise velocity component, respectively.
The index m is used to distinguish between axisymmetric flow, m = 1, and flow
between two parallel plates, m = 0. The working fluid is assumed to be an ideal gas
such that

P = ρRT , (2)

where R is the gas specific constant. Thus, if the temperature T = constant and
P = P (x), the density also depends on x only. Integration of the continuity equation
then implies

ρ(x)u(y, x) = G(y) or u(y, x) = uc(x)F(y). (3)

Due to the symmetry of the flow, the dimensionless velocity-profile function F(y)
is maximum and, thus, dF/dy = 0 at y = 0. F(y = 0) = 1 if uc(x) is the centreline
velocity u(0, x). A reduced velocity-profile function E(r) is defined by

E(r) ≡ F(y) with r = y/H. (4)

Substituting u(y, x) in the equation of motion yields the following governing equation:

ρuc
duc
dx

E2(r) = −dP

dx
+
µuc

H2
f{E(r)}+ µ

(
4

3
+
η

µ

)
d2uc

dx2
E(r), (5)
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with the operator f defined as

f ≡ 1

rm
d

dr

(
rm

d

dr

)
. (6)

The centreline velocity is replaced by the density as follows:

uc(x) = W/ρ(x), (7)

where W is related to the mass-flow rate according to

Q = (2− m)D1−m(2π)m
∫ H

0

ρ(x)u(y, x)ym dy

= (2− m)(2π)mD1−m(H)1+mW

∫ 1

0

E(r)rm dr. (8)

Thus, W is a constant of the flow. The governing equation is then multiplied by ρ(x)
to obtain

−W
2

ρ

dρ

dx
E2(r) + µ

(
4

3
+
η

µ

)
Wρ

d

dx

(
1

ρ2

dρ

dx

)
E(r) = −ρdP

dx
+
µW

H2
f{E(r)}. (9)

Before it is solved, equation (9) is put into a dimensionless form. Initially the
equation is further simplified by integrating it over the length of the microchannel
from x = 0 to x = L; the pressure P (x) decreases from Pi = P (0) to Po = P (L) and
the density ρ(x) from ρi = ρ(0) to ρo = ρ(L). The result is

W 2Y E2(r)− µ
(

4

3
+
η

µ

)
WZE(r) = X +

µWL

H2
f{E(r)}, (10)

where the parameters X, Y and Z are defined by

X =

∫ Pi

Po

ρ dP = 〈ρ(P )〉∆P , Y = ln
ρi

ρo
, Z =

∫ ρi

ρo

ρ d

(
1

ρ2

dρ

dx

)
. (11)

∆P = Pi − Po is the pressure drop across the microchannel, and 〈ρ(P )〉 is a density
defined as the average of ρ(P ) over the pressure interval [Pi, Po]. Equation (10) can
now be re-written as

Af{E(r)} − BE2(r) + CE(r) + 1 = 0, (12)

where the constants A, B and C are defined as

A =
µWL

H2X
, B =

W 2Y

X
, C = µ

(
4

3
+
η

µ

)
WZ

X
. (13)

Normalizing the velocity profile by the centreline velocity and taking into account the
flow symmetry results in

E(r)|r=0 = 1,
dE(r)

dr

∣∣∣∣
r=0

= 0. (14)

Assuming the accommodation coefficient to be one and neglecting second-order terms,
the velocity slip boundary condition at the wall is given by (Beskok et al. 1996)

u(y, x)|y=H = −λ(x)
du

dy

∣∣∣∣
y=H

or uc(x)E(r)|r=1 = −2Kn(x)uc(x)
dE

dr

∣∣∣∣
r=1

, (15)
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where Kn(x) is inversely proportional to the pressure P (x):

Kn(x) ≡ λ(x)

2H
=

µ

P (x)

(
πRT

2

)1/2
1

2H
. (16)

Integrating equation (15) between the channel inlet and outlet allows the introduction
of an average Knudsen number Kn as follows:

Kn =

∫ L

0

Kn(x)uc(x) dx

/∫ L

0

uc(x) dx. (17)

The corresponding slip boundary condition becomes

E(r)|r=1 = −2Kn
dE(r)

dr

∣∣∣∣
r=1

. (18)

For an incompressible fluid ρi = ρo, so that the parameters Y and Z and, conse-
quently, the constants B and C are zero. Therefore, in the next section, the present
flow problem is treated by a perturbation method in terms of the small parameters B
and C , which are unknown in advance but depend on the solution itself.

3. Perturbation solutions
Equation (12) will be solved analytically, using a perturbation method, for com-

pressible laminar flow either between parallel plates (m = 0) or in a circular capillary
(m = 1) with the slip boundary condition, following the same approach as van den
Berg et al. (1993a).

3.1. General formalism

The parameters B and C vanish for incompressible flow and are assumed to be small
for compressible flow. Therefore, the velocity-profile function E(r) is expanded in
powers of these parameters as follows:

E(n)(r) =

n∑
i=0

n∑
j=0

Ei,j(r)B
iCj, i+ j 6 n, (19)

where the superscript (n) denotes the order n of the approximation. This power series
implies

A(n) = A(0)

[
1 +

n∑
i=0

n∑
j=0

Ai,jB
iCj

]
, 1 6 i+ j 6 n. (20)

These two power series expansions are then substituted into equation (12). The
solution of the resulting equation is derived in successive powers of BiCj by equating
the corresponding terms on both sides of the equation up to the second order:

zero order

i = 0, j = 0: A(0)f{E0,0(r)}+ 1 = 0; (21)

first order

i = 1, j = 0: A(0)[A1,0f{E0,0(r)}+ f{E1,0(r)}]− E2
0,0(r) = 0, (22a)

i = 0, j = 1: A(0)[A0,1f{E0,0(r)}+ f{E0,1(r)}] + E0,0(r) = 0; (22b)



Subsonic gas flow in a microchannel 131

second order

i = 2, j = 0: A(0)[A2,0f{E0,0(r)}+ A1,0f{E1,0(r)}+ f{E2,0(r)}]
−2E0,0(r)E1,0(r) = 0, (23a)

i = 1, j = 1: A(0)[A1,1f{E0,0(r)}+ A0,1f{E1,0(r)}+ A1,0f{E0,1(r)}+ f{E1,1(r)}]
= 2E0,0(r)E0,1(r)− E1,0(r), (23b)

i = 0, j = 2: A(0)[A0,2f{E0,0(r)}+ A0,1f{E0,1(r)}+ f{E0,2(r)}] + E0,1(r) = 0. (23c)

These sets of equations are solved at successive order in terms of the total power
of BiCj . The nth set consists of n + 1 equations; each separately contains only
one unknown function Ei,j(r) and a corresponding constant Ai,j , with i+ j = n. The
remaining functions and constants, for which i+ j < n, have already been found from
the sets of equations of the previous order. Thus, the functions Ei,j(r) can be found,
while the values of Ai,j and the two integration constants are determined from the
application of the normalization and boundary conditions:

E0,0(r)|r=0 = 1⇒ Ei,j(r)|r=0 = 0 for i+ j > 0, (24a)

dEi,j(r)

dr

∣∣∣∣
r=0

= 0 and Ei,j(r)|r=1 = −2Kn
dEi,j(r)

dr

∣∣∣∣
r=1

for i+ j > 0. (24b)

In order to find the expression for the mass flow rate at the order n, the nth-order
velocity profile E(n)(r) is substituted into the integrand of equation (8). The mass flow
rate is constant for a given flow, which leads to the following expression for W (n):

W (0)

W (n)
= 1 +

n∑
i=0

n∑
j=0

Wi,jB
iCj, 1 6 i+ j 6 n, (25)

with

Wi,j =

∫ 1

0

Ei,j(r)r dr

/∫ 1

0

E0,0(r)r dr, (26)

and the mass flow rate is given by

Q(n) = Q(0)

[
1 +

n∑
i=0

n∑
j=0

Ai,jB
iCj

][
1 +

n∑
i=0

n∑
j=0

Wi,jB
iCj

]
, 1 6 i+ j 6 n, (27)

where, for consistency of the calculation, the final series expansion for Q(n) in terms
of BiCj should be trancated to terms with i+ j 6 n.

The exact values of the parameters B and C can be calculated simultaneously from
the respective expressions in equation (16), which are written for that purpose as

B =
B(0)[

1 +

∞∑
i=0

∞∑
j=0

Wi,jB
iCj

]2
, C = C (0)

[
1 +

∞∑
i=0

∞∑
j=0

Ai,jB
iCj

]
, 1 6 i+ j, (28)

with

B(0) =
Y

X
W (0)2, C (0) = µ

(
4

3
+
η

µ

)
Z

X
W (0). (29)

The consistency of the perturbation calculations of B and C should be maintained
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throughout each order. This will be accomplished by developing B and C into series of
successive powers of BiCj and, subsequently, by transformation of both series together
into power series of the zero-order terms, restricting these series to that finite number
of terms that does not exceed the order of the calculation. It is straightforward to
recover the numerical results of van den Berg et al. (1993a) by selecting Kn = 0 and
m = 1.

3.2. Zero-order solution

From equation (21) it follows that

A(0)f{E0,0(r)} = −1. (30)

Integration of this differential equation under the boundary conditions in (24) leads
to

E(0)(r) = E0,0(r) = 1− r2

1 + 4Kn
and A(0) =

1 + 4Kn

2(m+ 1)
. (31)

E0,0(r), with Kn = 0, represents the well-known parabolic velocity profile. Substitution
of A(0) into definition (13) to obtain W (0) allows the calculation of the leading-order
mass flow rate:

Q(0) =
1 + (3 + m)2Kn

(m+ 1)2(m+ 3)
(2− m)(2π)mD1−mH3+m X

µL
= QiαC(1 + αS ), (32)

where Qi is the mass flow rate for an incompressible flow, αC is the ‘compression’
factor, and αS is the correction due to slip-flow effect. These expressions, evaluated
for a plane channel (m = 0), are given by

Qi =
2

3

DH3

µL
∆P

Po

RT
, αC =

Pi + Po

2Po
=
P

Po
, αS = 6Kn . (33)

Thus, the solution for Q(0), the mass flow rate of a compressible slip flow at zero
order, formally includes corrections to the compressible- and slip-flow effects; namely
these are leading-order effects.

3.3. First-order solution

The first-order solutions A1,0, E1,0(r) and W1,0 are computed from equation (22a) by
substituting the zero-order solutions for E0,0(r) and A(0), equation (31), followed by
repeated integration with application of the boundary conditions (24). For m = 0,
this results in

E1,0(r) =
2

(1 + 4Kn)2

[
240Kn2 + 72Kn + 6

45(1 + 4Kn)2
r2 − 1

6
r4 +

1

30(1 + 4Kn)
r6

]
, (34a)

A1,0 =
−960Kn3 − 560Kn2 − 132Kn − 11

15(1 + 4Kn)3
, (34b)

W1,0 =
392Kn2 + 90Kn + 5

105(1 + 6Kn)(1 + 4Kn)3
. (34c)

Likewise, the solutions A0,1, E0,1(r) and W0,1 are computed from equation (22b). By
imposing a consistency restriction on equation (28), the values of B and C are found
to be

B = B(1) = B(0) and C = C (1) = C (0). (35)
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The final form of the first-order solution for the mass flow rate is

m = 0:

Q(1)

Q(0)
= 1− 840Kn3 + 420Kn2 + 84Kn + 6

35(1 + 4Kn)2(1 + 6Kn)

XY H4

µ2L2

+
60Kn2 + 20Kn + 2

5(1 + 4Kn)(1 + 6Kn)

(
4

3
+
η

µ

)
ZH2

L
, (36a)

m = 1:

Q(1)

Q(0)
= 1− 32Kn2 + 8Kn + 1

32(1 + 4Kn)2

XY H4

µ2L2
+

48Kn2 + 12Kn + 1

6(1 + 4Kn)(1 + 8Kn)

(
4

3
+
η

µ

)
ZH2

L
. (36b)

The mass flow rate with the first-order correction can be re-written as

Q(1) = Q(0)(1 + αAP ) = QiαC(1 + αS )(1 + αAP ), (37)

with αAP being the correction due to flow acceleration and the non-parabolic velocity
profile, given for Kn = 0 and m = 0 by

αAP = − 6

35

XY H4

µ2L2
= − 3

35

H4

µ2L2
(P 2

i − P 2
o ) ln

Pi

Po
. (38)

3.4. Second-order solution

The second-order solutions are computed from equation (23), following the same
procedure as applied for the first-order solutions. For example (m = 0):

A2,0 =
−376320Kn4 − 182400Kn3 − 37808Kn2 − 3912Kn − 163

4725(1 + 4Kn)6
, (39a)

E2,0(r) =
−2

675(1 + 4Kn)5
r10 +

1

35(1 + 4Kn)4
r8 +

320Kn3 − 240Kn2 − 84Kn − 7

225(1 + 4Kn)6
r6

−960Kn3 + 400Kn2 + 84Kn + 7

45(1 + 4Kn)5
r4 +

[
3225600Kn5 + 2472960Kn4

4725(1 + 4Kn)7

+
906240Kn3 + 179248Kn2 + 18264Kn + 761

4725(1 + 4Kn)7

]
r2, (39b)

W2,0 =
12418560Kn5 + 8785920Kn4 + 3061344Kn3 + 558640Kn2 + 49200Kn + 1640

51975(1 + 4Kn)6(1 + 6Kn)
.

(39c)

A1,1, A0,2, E1,1(r), E0,2(r), W1,1 and W0,2 are similarly calculated. According to equation
(27), the perturbation solution for the mass flow rate is then given by

Q(2) = Q(0)[1 + (A1,0 +W1,0)B + (A0,1 +W0,1)C + (A2,0 + A1,0W1,0 +W2,0)B
2

+(A0,1W1,0 + A1,0W0,1 +W1,1)BC + (A0,2 + A0,1W0,1 +W0,2)C
2]. (40)
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To compute B and C in the second-order results consistently, they are re-written as

B = B(0)

[
1 +

2∑
i=0

2∑
j=0

Bi,jB
(0)iC (0)j

]
,

C = C (0)

[
1 +

2∑
i=0

2∑
j=0

Ci,jB
(0)iC (0)j

]
, 1 6 i+ j 6 2. (41)

By using equation (28), where the coefficients Wi,j and Ai,j are known for i, j = 0, 1, 2,
the coefficients Bi,j and Ci,j are found to be

B1,0 = 2A1,0, B0,1 = 2A0,1, B2,0 = 2A2,0 + A2
1,0,

B1,1 = 2A1,1 + 2A0,1A1,0, B0,2 = 2A0,2 + A2
0,1; (42a)

C1,0 = A1,0, C0,1 = A0,1, C2,0 = A2,0, C1,1 = A1,1, C0,2 = A0,2, (42b)

and, hence, B and C are given by

B = B(2) = B(0)(1 + B1,0B
(0) + B0,1C

(0) + B2,0B
(0)2 + B1,1B

(0)C (0) + B0,2C
(0)2), (43a)

C = C (2) = C (0)(1 + C1,0B
(0) + C0,1C

(0) + C2,0B
(0)2 + C1,1B

(0)C (0) + C0,2C
(0)2). (43b)

The second-order mass flow rate can now be calculated as follows:

Q(2)

Q(0)
= 1 + Q1,0B

(0) + Q0,1C
(0) + Q2,0B

(0)2 + Q1,1B
(0)C (0) + Q0,2C

(0)2. (44)

3.5. Axial-flow solution

Consistent with the assumption that the pressure (as well as the density) is a function
of the streamwise coordinate only, equation (9) can be integrated in the cross-stream
direction to provide the streamwise dependence of the flow parameters, resulting in

B1

ρ(ξ)

d

dξ
ρ(ξ)− C1ρ(ξ)

d

dξ

[
1

ρ(ξ)2

d

dξ
ρ(ξ)

]
= ρ(ξ)

d

dξ
P (ξ)− A1, (45)

where

A1 = (1 + m)
µWL

H2

dE(r)

dr

∣∣∣∣
r=1

= AX(1 + m)
dE(r)

dr

∣∣∣∣
r=1

, (46a)

B1 = (1 + m)W 2

∫ 1

0

rmE(r)2 dr =
BX

Y
(1 + m)

∫ 1

0

rmE(r)2 dr, (46b)

C1 = (1 + m)µ

(
4

3
+
η

µ

)
W

L

∫ 1

0

rmE(r) dr =
CX

ZL
(1 + m)

∫ 1

0

rmE(r) dr, (46c)

and ξ = x/L is the non-dimensional streamwise coordinate. The parameters A1, B1
and C1 are constants in terms of the known parameters A, B and C . It is convenient
to re-write the equation in terms of ρ2(ξ), while replacing the pressure P by the
density ρ:

B1

2ρ2

d

dξ
ρ2 − C1

2

[
1

ρ2

d2

dξ2
ρ2 − 3

2(ρ2)2

(
d

dξ
ρ2

)2
]

=
RT

2

d

dξ
ρ2 − A1. (47)
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The streamwise solution is expanded in powers of B1 and C1, which are also small
parameters, as follows:

ρ2(ξ) = δ0(ξ) + B1δ1,0(ξ) + C1δ0,1(ξ) + B12δ2,0(ξ) + B1C1δ1,1(ξ) + C12δ0,2(ξ). (48)

This power series expansion is substituted into equation (47), and the solution of the
resulting equation is then derived in successive powers of B1iC1j:

zero order

i = 0, j = 0 : RT
d

dξ
δ0(ξ) = 2A1; (49)

first order

i = 1, j = 0: RT
d

dξ
δ1,0(ξ) =

1

δ0(ξ)

d

dξ
δ0(ξ), (50a)

i = 0, j = 1: RT
d

dξ
δ0,1(ξ) =

3

2[δ0(ξ)]2

[
d

dξ
δ0(ξ)

]2

− 1

δ0(ξ)

d2

dξ2
δ0(ξ), (50b)

and similarly for the second order, i.e. δ2,0(ξ), δ1,1(ξ) and δ0,2(ξ). Successive integrations
of these differential equations between inlet (ξ = 0) and outlet (ξ = 1) provide the
solutions:

i = 0, j = 0: δ0(ξ) = δ0(1)− 2A1

RT
(1− ξ), (51a)

i = 1, j = 0: δ1,0(ξ) =
1

RT
ln
δ0(ξ)

δ0(1)
, (51b)

i = 0, j = 1: δ0,1(ξ) =
A1

RT

[
3

RTδ0(1)
− 3

2A1ξ − 2A1 + RTδ0(1)

]
, (51c)

etc. Substitution of the solutions into equation (48) yields the following first-order
solution:

ρ2(ξ) = δ0(ξ) +
B1

RT
ln
δ0(ξ)

δ0(1)
− C1

(RT )3

6A12

δ0(1)

1− ξ
δ0(ξ)

. (52)

The parameters A1, B1 and C1 are calculated based on equation (46). In order to
complete the solution, the parameter Z defined in equation (11) can now be evaluated
(m = 0):

Z =
−3X

2LRTδ0(1)
+

(
6Y − 5X

RTδ0(1)

)
(60Kn2 + 20Kn + 2)W (0)2

15LRT (1 + 4Kn)2δ0(1)

+

(
9

2
+

7X

RTδ0(1)

)
1 + 6Kn

3 + 12Kn

(
4

3
+
η

µ

)
µXW (0)

[LRTδ0(1)]2
. (53)

Once the density squared is known, the streamwise dependence of both the density
and the pressure is readily available. Using the relations: Kn(x)P (x) = KnoPo and
uc(x)ρ(x) = W , the average Knudsen number can now be evaluated explicitly:

Kn =

∫ L

0

Kn(x)uc(x) dx

/∫ L

0

uc(x) dx = Knoρo

∫ 1

0

ρ−2 dξ

/∫ 1

0

ρ−1dξ, (54)

where ρo and Kno are the outlet density and Knudsen number, respectively, and
substitution of δ0(1) = ρ2

o leads to

Kn ≈
√
RTKnoρo

2[
√
RTρ2

o − 2A1−√RTρ2
o]

ln

(
1− 2A1

RTρ2
o

)
. (55)
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Figure 1. The dependence of the parameters B and C on the pressure ratio Pi/Po:
——, Kn = 0; · · · · · ·, Kn = 0.05.

4. Analytical results
The initial assumptions on which the entire analytical derivation is based, namely

the magnitude and ordering of the small parameters in the expansion procedure,
need to be verified. The solution was expanded in powers of B and C , since they
vanish for Pi/Po → 1. Hence, the ratios B/A and C/A are calculated in figure 1 as a
function of the pressure ratio. Both are smaller than 10−4, demonstrating that these
are indeed small parameters for the compressible flow. However, the ordering is not
accurate since C/B ∼ 10−2, while it was assumed in the analysis that C/B ∼ 1. This
is not a major issue as terms on the order of C should be considered as second
order like B2, and C2 to be fourth order like B4. Terms of the order BC should
no longer be considered second order but rather third order like B3. This means
that the contribution of the longitudinal viscosity can be neglected as assumed in
many theoretical derivations. However, this ordering has no bearing on the solutions
obtained.

The normalized zero-, first- and second-order solutions of the velocity profile are
shown in figure 2(a) for slip flow with Kn = 0.05. The main feature is of course
the finite velocity slip at the wall, r = 1, which is not zero. The correction of the
zero-order solution due to the first- and second-order terms is very small, < 10−5, and
could justifiably be neglected in the computation of the normalized velocity profile.
However, in this case the normalized velocity profile does vary with the streamwise
location since the Knudsen number is a function of the pressure, which decreases
from Pi to Po. The slip flow effect on the normalized velocity profile is demonstrated
in figure 2(b). As expected, the gas velocity at the wall increases with increasing
Knudsen number.

The streamwise evolution of various flow parameters depends on the working
gas, channel geometry and inlet/outlet conditions. An example for nitrogen gas as
the working fluid in a microchannel 40 µm × 1 µm × 4000 µm in dimensions, under
a pressure ratio of 10, is depicted in figure 3. The density, centreline velocity and
Mach number are plotted in figure 3(a) while the pressure and Knudsen number are
plotted in figure 3(b), as a function of the downstream location from the channel
inlet. The symbols are the results for no-slip flow, Kn = 0, while the curves are
the results for the slip flow, Kno = 0.06. The slip-flow effect on the density and the
pressure distribution is clearly negligible, as was reported by Arkilic et al. (1997).
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Figure 2. Slip-flow effect on the cross-stream velocity profiles. (a) Kn = 0.05: ——, E(0)(r);
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They suggested a simplified model to calculate the pressure distribution as follows:

P (x)

Po
= −6Kno +

{(
6Kno +

Pi

Po

)2

−
[(

P 2
i

P 2
o

− 1

)
+ 12Kno

(
Pi

Po
− 1

)]( x
L

)}1/2

,

(56)

and the agreement between calculations based on the two models is within 0.5%. The
non-linear streamwise pressure distribution is the result of the compressible effect
as the gas pressure decreases from the inlet to the outlet atmospheric pressure and,
accordingly, the density also decreases. The Knudsen number, inversely proportional
to the pressure, increases to its maximum value at the channel outlet.

The only parameter to be noticeably modified due to the slip-flow effect is the
centreline velocity uc(x). Since the velocity at the wall is no longer zero and the
pressure gradient is practically the same, the centreline velocity is higher compared
with the no-slip flow, Kn = 0. It increases from a minimum value at the inlet to its
maximum value at the outlet. Accordingly, the Mach number is also increasing along
the channel to a maximum value of 0.025 at the channel outlet. All the parameters
exhibit a rapid change close to the channel exit, 0.8 < ξ < 1.0, compared to the slow
variations along most of the channel, 0 < ξ < 0.8, due to compressibility. Once the
centreline velocity distribution along the channel is obtained, the entire velocity field
u(y, x) can be calculated. The velocity profiles at the inlet, mid-channel and outlet
locations are plotted in figure 4 with and without the slip-flow effect.

The contribution of different effects to the resulting mass flow rate is demonstrated
in figure 5, where the calculations are carried out for nitrogen with Po = 0.1 MPa.
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velocity distributions at: —©—, ξ = 0; - - -�- - -, ξ = 0.9; . . .4. . . , ξ = 1.

Clearly, the most dramatic effect is due to compressibility when comparing the
incompressible curve, Qi, with the curve calculated with the compressibility effect
only, QiαC . The only other significant effect is due to the slip flow, QiαC(1 + αS ),
which increases the mass flow rate by about 10%. However, the correction of the
compressible mass flow rate due to the acceleration and non-parabolic velocity profile,
αAP , is evidently negligible. The same simplified two-dimensional model as used for
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Figure 5. Mass flow rate dependence on the pressure drop accounting for slip, compressible,
acceleration and non-parabolic velocity profile effects: · · · · · ·, Qi; - - - - - -, QiαC ; 4, QiαC (1 + αAP );
——, QiαC (1 + αS ); ©, QiαC (1 + αS )(1 + αAP ); ——, equation (57).

the derivation of equation (56), can be used to calculate the mass flow rate as follows:

Q =
H3DP 2

o

3RTµL

[(
Pi

Po

)2

− 1 + 12Kno

(
Pi

Po
− 1

)]
. (57)

This model accounts only for the compressible- and slip-flow effects. Hence, the
agreement between the current results and calculations based on equation (57) further
confirms that the other effects can indeed be neglected.

5. Experimental arrangements
An experimental investigation of gas flows in straight and uniform microchannels

was also conducted. The microdevices were designed for flow rate and pressure
distribution measurements, utilizing standard micromachining techniques. Hence, each
device included a single microchannel with integral pressure microsensors. The design
parameters were selected based on the limitations of the fabrication technology and
the constraints of the connection to the external fluid handling system.

5.1. Integral microchannel design

In surface microfabrication technology, using the sacrificial layer technique, it is
difficult to deposit films thicker than 1µm. On the other hand, the formation of
a suspended membrane with a gap smaller than 0.5 µm is limited by the stiction
problem. Therefore, two nominal channel heights were chosen for this study, 0.5 and
1 µm, providing almost one order of magnitude difference in mass flow rate. The
channel width should be as large as possible, not only to increase the mass flow
rate, allowing more accurate measurements, but also to better approximate a two-
dimensional flow field for comparison with analytical models. A width of 40 µm was
found to provide the maximum aspect ratio, at least 40, while avoiding the stiction
problem.

The mass flow rate is inversely proportional to the channel length. Thus, for a
given channel cross-section, it is desirable to minimize the channel length in order to
maximize the mass flow rate. The microchannels were designed to be on the front side
of the wafer and connected to the external fluid handling system from the back-side
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Figure 6. Schematic drawing of the capillary connecting the integrated pressure sensor to the
microchannel: (a) top view, and (b) A-A cross-section (side view).

of the wafer. Therefore, holes through the wafers were required to allow the flow
of gas in and out of the microchannel. Alignment and dead-volume considerations
dictated an opening area of about 100 µm2 to the channel at the substrate front
side. The inlet/outlet holes were formed by wet etch, resulting in walls slanted at a
54.74◦ angle. Hence, each hole required an opening of approximately 800µm2 at the
substrate back side. Each microchannel was linked to the external system via ceramic
adaptors, having 1.5 mm inner diameter and 0.75 mm thick walls. Thus, the minimum
channel length that could allow convenient connection of the microchannel devices
to the external system was about 4 mm. Consequently, the nominal dimensions of the
microchannels were determined to be 40 µm in width, 4000 µm in length, and either
0.5 or 1 µm in height.

Pressure sensors were designed based on piezoresistive elements attached to a
square membrane, such that any pressure difference across the membrane results in
its deflection, consequently straining the piezoresistors and changing their resistance.
Each sensor connection to the microchannel sidewall was designed as a capillary
with the smallest possible cross-section area, as schematically shown in figure 6, to
minimize its effect on the flow field. The local sacrificial layer thickness forming
the capillary determines its final height. Therefore, the overall sacrificial layer was
designed as a combination of two films: the first (either 0.3 µm or 0.8 µm thick) to
define the microchannel and pressure sensor chambers, and the second (about 0.2 µm
thick) to define the capillary. Isotropic wet etch is used to pattern the sacrificial layer.
Therefore, the minimum feature size in the mask layout should be at least 4 µm to
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Figure 7. Schematic cross-sections of the major steps to fabricate the microchannels integrated
with pressure microsensors.

ensure a consistent final feature size of 2 µm, since a feature size smaller than 2 µm
might not survive the patterning process.

The sensor membrane area should be as large as possible to obtain maximum
deflection, but a large membrane over a small gap could result in the stiction of the
membrane to the underlying substrate. It was experimentally found that almost all
the membranes survive if the area is not larger than 100 µm × 100 µm, with a gap
up to 1 µm, while the sensitivity was still acceptable. Since the membrane deflection
was expected to be very small, four piezoresistive sensing elements were designed in
a Wheatstone bridge configuration to amplify the output signal. The bridge output-
voltage change due to the resistance change, under constant bridge voltage, indicates
the pressure difference across the sensor membrane.

5.2. Microsystem fabrication and packaging

Schematic cross-sections of the main fabrication steps are shown in figure 7. The
fabrication started with the formation of a 0.15 µm thermal silicon dioxide film and a
0.3 µm thick low-stress silicon nitride film, for insulation, on an (100) oriented silicon
wafer about 550 µm thick. This was followed by the deposition and patterning of a
phosphosilicate glass (PSG) layer, either 0.3 µm or 0.8 µm in thickness, to form the
channel and sensor chambers. Another 0.2µm-thick PSG film was then deposited
and patterned for the small capillaries, connecting the sensors to the channels, and
etching holes. Next, a structural layer of low-stress silicon nitride, 1 to 2 µm in
thickness, was deposited to form the channel sidewalls and ceiling as well as the
sensor membranes, figure 7(a). Orientation-dependent TMAH wet etching was used
to create the inlet/outlet holes from the wafer back side, utilizing the oxide/nitride
insulating stacked layer as an etch mask. The TMAH etch stopped at the insulating
layer on the wafer front side. Following the opening of the etching holes on the
nitride structural layer, the PSG sacrificial layer was etched by 49% hydrofluoric
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Figure 8. Pictures of: (a) a fabricated device, showing the microchannel, pressure sensors, channel
inlet/outlet and metal interconnects; and (b) a close-up of the pressure sensor, with the capillary
connection to the microchannel.

acid (HF), figure 7(b). This step is very critical since concentrated HF also etches
silicon nitride. Since the time to complete the removal of the PSG layer could not
be long, the distance between adjacent etching holes should be designed properly.
In the present work, the distance was about 150 µm, resulting in a release time of
approximately 10 min. The exposed inner surfaces of the microchannels, after the
sacrificial-layer etch, were silicon nitride films with surface roughness of about 15 nm.
A polycrystalline silicon layer of 0.5 µm in thickness was then deposited, boron doped
and patterned for both piezoresistor formation and etching-hole sealing, figure 7(c). A
1 µm thick aluminium layer for interconnections was next sputter deposited, patterned
and sintered. Finally, the fabrication process was completed with the etching of the
films separating the microchannels from the inlet/outlet holes, figure 7(d ). Pictures
of an overview of a fabricated microdevice and a close-up of an integrated pressure
sensor are depicted in figure 8.

The height of the microchannel is dictated by the thickness of the sacrificial layer;
although the thickness cannot be controlled precisely due to random variables in the
deposition process, it can be measured accurately. However, during the sacrificial-
layer etch for the channel formation, the nitride inner surfaces were also slightly
etched. This resulted in a channel height larger than the sacrificial-layer thickness.
A few fabricated samples were cut to take scanning electron microscopy (SEM)
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Figure 9. A SEM picture of a microchannel cross-section showing the channel height to be about
0.53 µm after completing the device fabrication.
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Figure 10. A schematic illustration of the experimental set-up.

micrographs of the cross-sections, as in the example shown in figure 9, in order to
determine the channel height as precisely as possible. The SEM cross-sections revealed
that the actual height of the microchannels was either 0.53µm or 0.97 µm compared
to the design values of 0.5µm and 1.0 µm, respectively. Test microchannels that were
fabricated near microchannels used for the SEM pictures, on the same wafer, were
assumed to have similar height.

The processed wafers were diced into individual dies. Upon inspection, dies that
survived the fabrication process were glued to custom-made lead-frames and, subse-
quently, wire-bonded to enable input/output of electrical signals to/from the sensors.

5.3. Experimental set-up

A schematic diagram of the experimental set up is given in figure 10. Three different
gases were used for the flow rate measurements: nitrogen, argon and helium. Each gas
was supplied from a separate high-pressure gas cylinder, at 10 MPa minimum, and the
flow rate was adjusted utilizing a two-stage pressure regulator. The working gas was
first passed through filters to prevent channel clogging, and then was forced through
the microchannel under inlet gauge pressure of up to 400 kPa. A pressure transducer,
Druck pressure calibrator model DPI 602 with accuracy of 0.01% full scale of up
to 2 MPa, was located at the channel inlet to measure the driving pressure drop,
while a voltmeter was connected to the integrated pressure sensors on the packaged
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Helium Argon Nitrogen

Density, ρ [kg m−3] 0.17 1.69 1.19
Specific constant, R [kJ kg−1 K−1] 2.077 0.20813 0.2968
Viscosity, µ [kg m−1 s−1] 1.99× 10−5 2.27× 10−5 1.79× 10−5

Mean free path, λ [µm] 0.20377 0.10396 0.0628

Table 1. Gas properties at ambient conditions of Ta = 293 K and Pa = 1 atm.

microdevice to measure the pressure distributions along the channel. The driving
pressure drop was kept below 1 MPa, not only to ensure subsonic flow along the
entire microchannel, but also to avoid the frequent failure of the connection between
the external fluid handling system and the packaged device at higher inlet pressure.

The flow rate was measured using a 10µl glass syringe opened to the ambient
pressure. The volume flow rate was determined visually as a meniscus of water
travelled past the marked scale on the syringe as a function of time. Multiplying this
rate by the outlet gas density, under ambient conditions, yields the mass flow rate. The
pressure loss required to move the meniscus of water in the syringe, about 0.5 kPa,
is negligible due to the significant total pressure drop across the microchannel (at
least 100 kPa). Since the pressure upstream and downstream of the water meniscus is
almost identical, diffusion of the working gas through the meniscus can be neglected.
For sensor calibration, both the inlet and outlet of the microchannel were connected
to the gas source, ensuring uniform static pressure throughout the entire microsystem,
and the pressure was adjusted using the transducer. Once a steady state was reached,
the voltage output of all sensors was recorded. The process was repeated 6–8 times
to obtain a calibration curve for each sensor.

6. Mass flow rate measurements
In the slip flow regime, 0.001 < Kn < 0.1, the no-slip boundary condition is no

longer valid. Although the interaction between the gas molecules and the solid
boundary (the accommodation coefficient) is a function of both gas properties and
boundary surface, most engineering surfaces have near unity values of full accom-
modation (Arkilic et al. 1997). Indeed, the surface roughness in the present devices is
about 15 nm, almost two orders of magnitude larger that the gas molecular diameter.
This most probably would result in a diffuse reflection boundary condition, namely
full accommodation of the streamwise momentum. The resulting velocity slip at the
wall is then directly proportional to the Knudsen number. Therefore, three different
gases were used as working fluids: two monatomic noble gases, helium and argon,
and one diatomic inert gas, nitrogen. The mean free path of helium is double that of
argon, enhancing the slip flow effect. The three tested gases are commercially available
at electronic grade, with purity better than 99.9%, such that the presence of other
gases can be neglected, and their physical properties are listed in table 1.

Mass flow rate measurements were conducted for the three gases in both forward
and backward directions to ensure that the channel was indeed symmetric with respect
to the channel inlet and outlet, and no particles were trapped within the microsystem
affecting the results. The difference between the inlet, Pi, and outlet pressure, Po, was
kept in the range 100–400 kPa. The experimental results are summarized in figure 11
as symbols. Under the same pressure drop, ∆P = Pi − Po, the argon flow rate is
higher than the nitrogen flow rate, which in turn is higher than the helium flow rate,
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Figure 11. A comparison between measured (symbols) and calculated (curves) mass flow rate.
(a) 2H = 0.53 µm; �, argon; 4, nitrogen; ©, helium; ×, Shih et al. (1996). (b) Nitrogen: ©,
2H = 0.97 µm; 4, 2H = 0.53 µm (solid lines are nominal flow rates; and dashed lines represent
±6% of the nominal rates).

figure 11(a). For comparison, helium flow measurements in a microchannel by Shih
et al. (1996) are also included. The differences in the mass flow rate are mainly due
to the gas density, since the mean free path and viscosity of the three gases are of
the same order of magnitude. The strong dependence of the mass flow rate on the
channel height is demonstrated in figure 11(b) for nitrogen flow.

In order to evaluate the slip-flow effect, the experimental results are compared with
analytical predictions based on the derived theoretical model. It has been demon-
strated that only the compressibility and slip-flow effects are important, while the
flow acceleration and the non-parabolic velocity profile can be neglected. Therefore,
the mass flow rate is calculated as follows:

Q =
2

3

DH3

µL
∆P

Po

RT

(
Pi + Po

2Po

)
(1 + 6Kn). (58)
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Mass flow rate calculations based on equation (58) are plotted in figure 11 as solid
curves. The good agreement between the analytical and experimental results not only
supports the basic assumptions made in deriving the theoretical model, but also
confirms that accounting for compressibility and slip-flow effects only is sufficient to
obtain correct mass flow rate predictions. Furthermore, the agreement between the
two sets of experiments confirms that the experimental procedures are sound and the
measurements can be repeated.

6.1. Error analysis

The theoretical model can also be used to evaluate the experimental error as every
measured variable in equation (58) contributes to the overall uncertainty in the
measured values of the mass flow rate. In order to simplify the analysis, the Knudsen
number effect is neglected as it was found to be relatively small. Hence, the mass
flow rate dependence on experimentally measured parameters is given by a simple
expression:

Q ∝ DH3

µL
∆P

P

RT
, (59)

where P = (Pi + Po)/2 is the mean pressure in the microchannel. Assuming the
viscosity and specific gas constant are known to very high accuracy, standard error
analysis then suggests the following relationship:

δQ0

Q0

=

√
9

(
δH0

H0

)2

+

(
δD0
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)2

+

(
δL0
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)2

+

(
δT0

T0

)2

+

(
δ∆P0

∆P0

)2

+

(
δP 0

P 0

)2

(60)

where the subscript 0 indicated nominally measured values, and δ indicates the
experimental error of the measured parameter. Some of the errors, i.e. geometrical
parameters, are systematic, while others, i.e. pressure and temperature, are random.
In this case, the systematic errors would smoothly shift the entire curve of mass flow
rate as a function of the pressure drop up or down, since the relative error is the
same for all the measurements. On the other hand, random errors would result in
fluctuations of data points within the same curve, since the error magnitude could
vary from one experiment to the other.

Equation (60) clearly indicates that the most critical measured parameter domi-
nating the experimental error is the height of the microchannel and, unfortunately,
this is also the most difficult dimension to measure with high accuracy. However, the
error in determining the exact height of the channel is systematic, and will be treated
separately. In order to estimate the error in the measured mass flow rate due to all
other parameters, the separate relative errors need to be evaluated. The microchannel
width and length are measured optically with accuracy better than 0.5µm and 10 µm,
respectively, resulting in approximately δD0/D0 ≈ δL0/L0 ∼1%. The temperature is
measured to within 1 K leading to δT0/T0 < 1%. Both the mean pressure and the
pressure drop are determined from the inlet and outlet pressure measurements carried
out by the same transducers with a relative error better than 1%. Therefore, setting
aside the channel height uncertainty, the mass flow rate can be predicted by equation
(58) to be within ±2.5%. This is also the estimated spread in statistically independent
direct measurements of the mass flow rate, i.e. repeating the measurements by dupli-
cating the same conditions on different days by different users. Repeated mass flow
rate measurements, while maintaining all other experimental parameters constant, are
within 1%.
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The cubic dependence of the mass flow rate on the microchannel height makes
it vital to determine this parameter as accurately as possible. Measurements of the
sacrificial layer thickness, though very accurate, are not adequate due to the etching
of the structural layers during the sacrificial layer etch. Cutting the device and directly
measuring the height at the end of the fabrication, as shown in figure 9, would provide
a very accurate value. However, this is a destructive method since the device can no
longer be used. Another approach is to cut a sample device for height measurements,
and assume that the height of all channels on the same wafer is the same as that of
the sample channel. We found that, in our lab, the height uniformity along a 4 mm
long channel is about 1%, while the uniformity among channels across a 100 mm
diameter wafer is about 5%. Therefore, as long as the test microchannel is located
within 10 mm of the sample channel, the test channel height should be within 2%
of the sample channel measured height. The 2% height uncertainty would result
in an error of 6% in the mass flow rate. Experimental measurements (symbols) of
nitrogen flow rate through two channels with different heights are compared with
calculations (solid lines) and curves corresponding to ±6% of the theoretical values
(dashed lines) in figure 11(b). To emphasize the importance of the channel height,
the 6% difference between the design value of 0.5 µm and the actual value of 0.53 µm
would result in 18% error in the mass flow rate, far greater than the error due to all
other sources.

In fact, it is not the height of the fabricated microchannel that is important but
rather the actual height during experimentation when the microchannel is pressurized.
The channel bottom is deposited on the 0.55 mm thick silicon substrate, which is
expected to remain flat during the experiments, even at high pressure. However, the
microchannel cover is a silicon nitride membrane about 1–2 µm in thickness that can
be deflected under high pressure. Wu et al. (1998) studied in detail this phenomenon,
which was termed the bulging effect, and derived a simple model to account for it.
They reported that a deviation of the measured mass flow rate from the theoretical
prediction could be observed only for driving pressure higher than 1 MPa. Hence, the
driving pressure in the current experiments was restricted to less than 0.5 MPa so that
effect of the top-surface deflection on the channel height can be neglected.

Another major source of experimental error, which cannot be quantified, is leakage.
Presumably, given the many connections and fittings between the gas reservoir and
the test microchannel, there can be no absolutely leak-proof system. The quick leak
check is carried out by immersing the entire pressurized system under water and,
subsequently, looking for gas bubbles formed in the water. A more laborious and
reliable technique is to connect the channel inlet and outlet to a common gas source
at the highest possible pressure. If there is no leak, the pressure will hold steady. If
there is a leak, the pressure will decrease with time.

7. Streamwise pressure distribution
It would be ideal to directly measure the velocity profiles in order to critically test

theoretical models, since the mass flow rate presents only an integral parameter with
no details of the flow field. However, at present, there is no known technique capable
of measuring velocity profiles in sub-micron channels. The next best criterion is the
pressure distribution. It is extremely difficult to measure the static pressure at more
than a single point at a given cross-section, and previous studies support the assump-
tion that the pressure can be considered uniform in a cross-section perpendicular to
the flow direction (Harley et al. 1995). Therefore, the static pressure is measured at
seven locations separated by a distance of about 650 µm.
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Figure 12. Pressure sensor calibration curves of voltage output dependence on the gauge pressure:
(a) all sensors in a 0.53 µm high device, and (b) repeated calibrations of a single sensor with the
normalized peak-to-peak pressure fluctuations in a 0.97 µm high device.

All pressure sensors were calibrated prior to the pressure distribution measurements,
and the calibration curves are plotted in figure 12. The sensor sensitivity was on the
average about 0.02 mV kPa−1 V−1, sufficient for the pressure range tested in this work.
Unfortunately, the pressure sensors did not all always function properly as indicated
in figure 12(a), where the output of one of the seven sensors is erratic. In many
instances, this is the result of intermittent electrical contacts. In order to estimate
the experimental error in the pressure measurements, the calibration process was
repeated several times as demonstrated in figure 12(b). The output voltage from each
sensor is converted to pressure using the corresponding calibration curve. Therefore,
the accuracy of the pressure measurements is directly determined by the accuracy of
the calibration curves. Different users repeated the calibration process independently
on different days. For most sensors, the peak-to-peak pressure fluctuations, Ppp, are
typically about 6% of the average pressure across the membrane, Pg , i.e. a relative
experimental error of ±3%. However, fluctuations up to ±5% were observed for the
worst sensor, which can be regarded as a conservative estimate.

Pressure measurements were conducted using argon through the 0.53µm high
channel, and nitrogen through the 0.97µm high channel; the data are summarized
in figures 13(a) and 13(b), respectively. Only Shih et al. (1996) have reported similar
measurements, and their results for helium flow in a microchannel are included
for comparison. Pressure distributions were also calculated based on the theoretical
model, equation (52) as follows:

P (ξ) = RT

[
ϕ0(ξ) +

B1

RT
ln
ϕ0(ξ)

ρ2
o

− C1

(RT )3

6A12

ρ2
o

1− ξ
ϕ0(ξ)

]1/2

. (61)
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Figure 13. A comparison between measured (symbols) and calculated (curves) streamwise pressure
distributions for: (a) argon in the 0.53 µm high microchannel, and (b) nitrogen in the 0.97 µm high
microchannel, for different mass flow rates.

The constants A1, B1 and C1 are calculated based on equation (46), while the function
ϕ0(ξ) is given by

ϕ0(ξ) = ρ2
o − 2A1

RT
(1− ξ). (62)

The calculated curves for all the test conditions are compared with the measurements
in figure 13, where the agreement between the experimental and analytical results is
well within the experimental error. The nonlinear pressure distribution due to the
compressible effect is evident, as reported previously (Shih et al. 1996). The results
confirm that the molecular structure, i.e. monatomic or diatomic, has no effect on the
flow field. Furthermore, the good agreement demonstrated in figure 13 also suggests
that the capillaries connecting the pressure sensors to the microchannel sidewall had
a negligible effect on the flow development.

8. Conclusions
An analytical solution to calculate the flow field of a steady isothermal compress-

ible laminar gas flow in either a circular or a planar microchannel has been derived
using a perturbation expansion method. The theoretical approach, accounting for
compressibility, slip, acceleration and non-parabolic velocity profile effects, allows
the explicit derivation of the cross-stream and the streamwise dependence of flow
parameters without the need for numerical simulations. Compressibility is found to
have the most dominant zero-order effect on the flow development. The pressure
distribution is nonlinear and the mass flow rate more than doubles compared with
an incompressible flow under the same pressure drop. The slip-flow effect also enters
the solution explicitly as a zero-order correction through the velocity-slip boundary
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condition. Hence, it is mainly manifested in the modified velocity profiles and, con-
sequently, it results in an enhanced mass flow rate. However, the pressure gradient
with or without the slip-flow effect is about the same. The combined effect of flow
acceleration and non-parabolic velocity profile is a first-order correction and can be
neglected.

A microsystem comprising a microchannel flow cell, less than 1 µm in height, with
integral pressure microsensors has been fabricated and tested. Mass flow rate and
pressure distribution measurements were conducted using argon, nitrogen and helium
as the working gases under inlet gauge pressure up to 0.5 MPa. An uncertainty analysis
revealed that the most critical experimental parameter is the channel height, especially
for the flow rate, which is a cubic function of the height. Accounting for other sources
of error, with the current technology, it is possible to obtain mass flow rate and
pressure measurements with a ±3% relative error. However, a ±3% uncertainty in
the channel height means a ±9% uncertainty in mass flow rate measurements; thus,
overwhelming all other errors. Determining the channel height accurately could be a
major challenge and destructive methods may be required. The agreement between
the experimental and analytical results confirms that compressibility and velocity slip
are the dominant effects in subsonic gas flows in the slip flow regime.

This work is supported by RGC Grant HKUST6012/98E.
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